Как определить достоверность различий по критерию стьюдента
Перейти к содержимому

Как определить достоверность различий по критерию стьюдента

  • автор:

Определение достоверности различий по t-критерию Стьюдента

/-Критерий Стьюдента относится к параметрическим, следовательно, его использование возможно только в том случае, когда результаты эксперимента представлены в виде измерений по двум последним шкалам — интервальной и отношений [5, 6, 7]. Проиллюстрируем возможности критерия Стьюдента на конкретном примере.

Предположим, вам необходимо выяснить эффективность обучения стрельбе по определенной методике. С этой целью проводится сравнительный педагогический эксперимент, где одна группа (экспериментальная), состоящая из 8 человек, занимается по предлагаемой экспериментальной методике, а другая (контрольная) — по традиционной, общепринятой. Рабочая гипотеза заключается в том, что новая, предлагаемая вами методика окажется более эффективной. Итогом эксперимента является контрольная стрельба из пяти выстрелов, по результатам которых (табл. 6) нужно рассчитать достоверность различий и проверить правильность выдвинутой гипотезы.

Что же необходимо сделать для расчета достоверности различий по /-критерию Стьюдента?

1. Вычислить средние арифметические величины X для каждой группы в отдельности по следующей формуле:

где Xt — значение отдельного измерения; я — общее число измерений в группе.

Проставив в формулу фактические значения из табл. 6, получим:

Сопоставление среднеарифметических величин доказывает, что в экспериментально^ группе данная величина (X, = 35) выше, чем в контрольной (Хк = 27). Однако для окончательного утверждения того, что занимающиеся экспериментальной группы научились стрелять лучше, следует убедиться в статистической достоверности различий (/) между рассчитанными среднеарифметическими значениями.

2. В обеих группах вычислить стандартное отклонение (5) по следующей формуле:

:де Ximax — наибольший показатель; Ximm — наименьший показатель; К — табличный коэффициент. Порядок вычисления стандартного отклонения (5): — определить Xitrax в обеих группах; — определить Ximia в этих группах; — определить число измерений в каждой группе (л); — найти по специальной таблице (приложение 12) значение коэффициента К, который соответствует числу измерений в группе (8). Для этого в левом крайнем столбце под индексом (и) находим цифру 0, так как количество измерений в нашем примере меньше 10, а в верхней строке — цифру 8; на пересечении этих строк — 2,85, что соответствует значению коэффициента .АГпри 8 испыту— подставить полученные значения в формулу и произвести необходимые вычисления:

3. Вычислить стандартную ошибку среднего арифметического значения (т) по формуле:

Для нашего примера подходит первая формула, так как п < 30. Вычислим для каждой группы значения:

4. Вычислить среднюю ошибку разности по формуле:

5. По специальной таблице (приложение 13) определить досто верность различий. Для этого полученное значение (t) сравнивает ся с граничным при 5 %-ном уровне значимости (t0fi5) ПРИ числе степеней свободы/= пэ + пк — 2, где пэк пк

общее число индивидуальных результатов соответственно в экспериментальной иконтрольной группах. Если окажется, что полученное в эксперименте t больше граничного значения (/0)о5)> т0 различия между средними арифметическими двух групп считаются достоверными при 50 %-ном уровне значимости, и наоборот, в случае когда полученное t меньше граничного значения t0<05, считается, что раз личия недостоверны и разница в среднеарифметических показателях групп имеет случайный характер. Граничное значение при 5 %-ном уровне значимости (Г0>05) определяется следующим образом:

вычислить число степеней свободы/= 8 + 8 — 2 = 14;

найти по таблице (приложение 13) граничное значение tofi5 при/= 14.

В нашем примере табличное значение tQ<05 = 2,15, сравним его с вычисленным Г, которое равно 1,7, т.е. меньше граничного значения (2,15). Следовательно, различия между полученными в эксперименте средними арифметическими значениями считаются недостоверными, а значит, недостаточно оснований для того, чтобы говорить о том, что одна методика обучения стрельбе оказалась эффективнее другой. В этом случае можно записать: / = 1,7 при/» > 0,05, это означает, что в случае проведения 100 аналогичньгх экспериментов вероятность (р) получения подобных результатов, когда средние арифметические величины экспериментальных групп окажутся выше контрольных, больше 5 %-ного уровня значимости или меньше 95 случаев из 100. Итоговое оформление таблицы с учетом полученных расчетов и с приведением соответствующих параметров может выглядеть следующим образом.

При сравнительно больших числах измерений условно принято считать, что если разница между средними арифметическими показателями равна или больше трех своих ошибок, различия считаются достоверными. В этом случае достоверность различий определяется по следующему уравнению:

Как уже говорилось в начале этого раздела, /-критерий Стью-дента может применяться только в тех случаях, когда измерения сделаны по шкале интервалов и отношений. Однако в педагогических исследованиях нередко возникает потребность определять Достоверность различий между результатами, полученными по Шкале наименований или порядка. В таких случаях используются непараметрические критерии. В отличие от параметрических непараметрические критерии не требуют вычисления определенных параметров полученных результатов (среднего арифметического, стандартного отклонения и т.п.), чем в основном и связаны их названия. Рассмотрим сейчас два непараметрических критерия для определения достоверности различий между независимыми результатами, полученными по шкале порядка и наименований.

Проверка статистических гипотез, критерий Стьюдента

В научно-исследовательской практике часто требуется сопоставить средние арифметические, например, при сравнении результатов в контрольной и экспериментальной группах, при оценке показателей здоровья населения в различных местностях за несколько лет и т. д.

Методологической основой любого исследования является формулировка рабочей гипотезы. При этом основной целью исследования является получение данных, на основании которых выдвинутую еще до начала исследования (априори) гипотезу можно было бы принять, т.е признать истинной, либо отвергнуть — признать ложной.

Выдвинутую гипотезу называют основной или нулевой (H0). Гипотезу, которая противоречит нулевой и является ее логическим отрицанием, называют конкурирующей или альтернативной (H1).

Гипотезы H0 и Н1 предоставляют выбор только одного из двух вариантов. Например, если нулевая гипотеза предполагает, что среднее арифметическое М = 15, то логическим отрицанием будет М ≠ 15. Коротко это записывается так: H0: М=15; Н1: М≠15. В медико-биологических исследованиях при сравнении регистрируемых признаков в качестве нулевой гипотезы принимают гипотезу об отсутствии различий.

Например, при оценке токсичности какого-либо вещества обычно берутся две группы лабораторных животных. Подбираются животные одинакового возраста, пола, одинакового содержания и т. п. Таким образом, делается все, чтобы эти группы животных представляли собой единую, как можно более однородную статистическую совокупность, с тем, чтобы максимально снизить исходную вариабельность анализируемых данных. Оптимальным с этой точки зрения считается ситуация, когда отличия сравниваемых групп заключаются только в том, что одна из групп (опытная) подвергается воздействию токсического вещества, а другая (контрольная) — нет. В любом случае, произошли ли после воздействия токсического вещества изменения в опытной группе или нет, различия средних показателей в обеих группах обязательно будут. Вопрос состоит в следующем: являются ли эти различия только следствием выборочного исследования, или разница возникла из-за того, что произошли существенные сдвиги физиологических функций животных опытной группы, которые будут обнаруживаться всегда, т.е. в генеральной совокупности. Значит, проверяется вопрос: принадлежат ли животные опытной и контрольной групп к той же самой генеральной совокупности или опытная группа принадлежит к другой генеральной совокупности (совокупности с измененными физиологическими параметрами)?

Методы оценки достоверности различий средних величин позволяют установить, насколько выявленные различия существенны (носят ли они закономерный характер или являются результатом действия случайных причин). Эту оценку можно выполнить только с определенной степенью вероятности, когда после установленного уровня вероятности допущение о наличии различий могут считаться закономерными или, наоборот, отвергаются.

Выдвинутая гипотеза может оказаться правильной или неправильной. При ее статистической проверке может быть отвергнута правильная гипотеза. Вероятность совершить такую ошибку называют уровнем значимости. Этот параметр принято обозначать через α или p. В биологии и медицине уровень значимости, как правило, принимают не выше 0,05. Это означает, что в 5 случаях из 100 (в 5%) мы рискуем отвергнуть правильную гипотезу. Соответственно, вероятность принятия такой гипотезы (P) равняется (P = 1 ‑ p) 0,95 (или 95%.)

Таким образом, статистическая значимость выборочных характеристик представляет собой меру уверенности в их «истинности». Уровень значимости находится в убывающей зависимости от надежности результата. Более высокая статистическая значимость соответствует более низкому уровню доверия к найденной в выборке средней величине. Именно уровень значимости представляет собой вероятность ошибки, связанной с распространением наблюдаемого результата на всю генеральную совокупность.

Выбор порога уровня значимости, выше которого результаты отвергаются как статистически не подтвержденные, во многом произвольный. Как правило, окончательное решение обычно зависит от традиций и накопленного практического опыта в данной области исследований. Верхняя граница p<0,05 статистической значимости содержит довольно большую вероятность ошибки (5%). Поэтому в тех случаях, когда требуется особая уверенность в достоверности полученных результатов, принимается значимость p<0,01 или даже p<0,001.

В практике медико-биологических исследований наиболее часто используются следующие значения показателей значимости: 0,1; 0,05; 0,01; 0,001. Традиционная интерпретация уровней значимости, принятая в этих исследованиях, представлена в таблице 21.

Интерпретация уровня значимости (p).

значимости (p)

Данные согласуются с нулевой гипотезой (H0), различия не подтверждены

Критерий Стьюдента в Microsoft Excel

Критерий Стьюдента в Microsoft Excel

Одним из наиболее известных статистических инструментов является критерий Стьюдента. Он используется для измерения статистической значимости различных парных величин. Microsoft Excel обладает специальной функцией для расчета данного показателя. Давайте узнаем, как рассчитать критерий Стьюдента в Экселе.

Определение термина

Но, для начала давайте все-таки выясним, что представляет собой критерий Стьюдента в общем. Данный показатель применяется для проверки равенства средних значений двух выборок. То есть, он определяет достоверность различий между двумя группами данных. При этом, для определения этого критерия используется целый набор методов. Показатель можно рассчитывать с учетом одностороннего или двухстороннего распределения.

Расчет показателя в Excel

Теперь перейдем непосредственно к вопросу, как рассчитать данный показатель в Экселе. Его можно произвести через функцию СТЬЮДЕНТ.ТЕСТ. В версиях Excel 2007 года и ранее она называлась ТТЕСТ. Впрочем, она была оставлена и в позднейших версиях в целях совместимости, но в них все-таки рекомендуется использовать более современную — СТЬЮДЕНТ.ТЕСТ. Данную функцию можно использовать тремя способами, о которых подробно пойдет речь ниже.

Способ 1: Мастер функций

Проще всего производить вычисления данного показателя через Мастер функций.

  1. Строим таблицу с двумя рядами переменных. Два ряда аргументов в Microsoft Excel
  2. Кликаем по любой пустой ячейке. Жмем на кнопку «Вставить функцию» для вызова Мастера функций. Переход в мастер функций в Microsoft Excel

В поле «Хвосты» вписываем значение «1», если будет производиться расчет методом одностороннего распределения, и «2» в случае двухстороннего распределения.

В поле «Тип» вводятся следующие значения:

Номер типа Из чего состоит выборка
1 Из зависимых величин
2 Из независимых величин
3 Из независимых величин с неравным отклонением

Выполняется расчет, а результат выводится на экран в заранее выделенную ячейку.

Результат функции СТЬЮДЕНТ.ТЕСТ в Microsoft Excel

Способ 2: работа со вкладкой «Формулы»

Функцию СТЬЮДЕНТ.ТЕСТ можно вызвать также путем перехода во вкладку «Формулы» с помощью специальной кнопки на ленте.

  1. Выделяем ячейку для вывода результата на лист. Выполняем переход во вкладку «Формулы». Переход во вкладку фоормулы в Microsoft Excel
  2. Делаем клик по кнопке «Другие функции», расположенной на ленте в блоке инструментов «Библиотека функций». В раскрывшемся списке переходим в раздел «Статистические». Из представленных вариантов выбираем «СТЬЮДЕНТ.ТЕСТ». Переход к функции СТЬЮДЕНТ.ТЕСТ в Microsoft Excel
  3. Открывается окно аргументов, которые мы подробно изучили при описании предыдущего способа. Все дальнейшие действия точно такие же, как и в нём.

Способ 3: ручной ввод

Формулу СТЬЮДЕНТ.ТЕСТ также можно ввести вручную в любую ячейку на листе или в строку функций. Её синтаксический вид выглядит следующим образом:

Что означает каждый из аргументов, было рассмотрено при разборе первого способа. Эти значения и следует подставлять в данную функцию.

Ручной ввод функции СТЬЮДЕНТ.ТЕСТ в Microsoft Excel

После того, как данные введены, жмем кнопку Enter для вывода результата на экран.

Результат ручного ввода функции СТЬЮДЕНТ.ТЕСТ в Microsoft Excel

Как видим, вычисляется критерий Стьюдента в Excel очень просто и быстро. Главное, пользователь, который проводит вычисления, должен понимать, что он собой представляет и какие вводимые данные за что отвечают. Непосредственный расчет программа выполняет сама.

Пример расчета t-критерия Стьюдента для независимых выборок

Предположим, что надо сравнить между собой результаты выполнения тестов на внимание в двух группах. Чтобы узнать различаются ли группы между собой необходимо вычислить t-критерий Стьюдента для независимых выборок.

1. Внесем данные по группам в таблицу:

Результаты группы №1 (сек.) Результаты группы №2 (сек.)
1 30 46
2 45 49
3 41 52
4 38 55
5 34 56
6 36 40
7 31 47
8 30 51
9 49 58
10 50 46
11 51 46
12 46 56
13 41 53
14 37 57
15 36 44
16 34 42
17 33 40
18 49 58
19 32 54
20 46 53
21 41 51
22 44 57
23 38 56
24 50 44
25 37 42
26 39 49
27 40 50
28 46 55
29 42 43

Шаг 2. Проверить распределения на нормальность.

Шаг 3. Рассчитать среднее арифметическое, стандартное отклонение и количество человек в каждой группе.

Результаты группы №1 (сек.) Результаты группы №2 (сек.)

Шаг 5. Вычисляем степени свободы.

Значение 6,09 больше чем значение 3,473 следовательно уровень значимости меньше 0,001

Шаг 7. Если уровень значимости меньше 0,05 делается вывод о наличи различий между группами. Таким образом между двумя группами есть различия в скорости выполнения тестов на внимание.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *